NanoPro 1000信號轉(zhuǎn)導(dǎo)蛋白磷酸化分析系統(tǒng)
在細胞生物學(xué)功能研究中,有許多常規(guī)的研究手段,如流式,生物質(zhì)譜,雙向電泳,蛋白芯片等技術(shù)。隨著研究的深入,科學(xué)家們特別需求進行真正意義上的高靈敏,高精度研究手段,力求通過一次實驗,快速發(fā)現(xiàn)更多的信息:鑒定結(jié)果更為可信,靈敏度更加提高來鑒定更多低豐度蛋白,更多的修飾信息,結(jié)構(gòu)信息等。傳統(tǒng)分析技術(shù)具有很多局限性,如雙向凝膠電泳(2DE),對疏水性蛋白、堿性蛋白、特別是低豐度蛋白等無能為力,成為蛋白質(zhì)組研究的瓶頸;而質(zhì)譜分析技術(shù)也是由于靈敏度等問題,需要大量的樣品等原因,十幾年來一直對研究低豐度調(diào)控蛋白缺乏信心.
相同的Western, 不同的生物學(xué)實驗結(jié)果
另外, 傳統(tǒng)蛋白分析技術(shù)所用的蛋白量需來自成千上萬個細胞。所得結(jié)果分辨率及重復(fù)性不理想。各種蛋白分析法所需樣品量如下:
1.質(zhì)譜儀樣品量100000 個細胞
2.細胞儀樣品量:10000 個細胞
3蛋白電泳,樣品量:5000 個細胞
4.蛋白芯片樣品量:1000個細胞
ProteinSimple公司的NanoPro1000超微量蛋白分析系統(tǒng)為蛋白功能和信號通路研究提供了一個全新的研究方案。傳統(tǒng)的蛋白研究方法需要成千上萬的細胞,而NanoPro 1000系統(tǒng)每次分析僅需要25個細胞。
并可對超微量珍貴樣品的信號轉(zhuǎn)導(dǎo)蛋白之特性直接檢測,適用各種樣品包括:
1.原代細胞
2.FACS 分選細胞
3.穿刺抽取之腫瘤細胞
4.顯微切片組織細胞
5.分離的干細胞群
NanoPro系統(tǒng)利用專利的毛細管樣品定位及分析技術(shù),結(jié)合毛細管分離及化學(xué)發(fā)光檢測原理進行納米級的自動化實驗,避免了人為操作誤差,有效提高檢測結(jié)果的精確性和重復(fù)性。過去蛋白檢測儀無法檢測到的信息,如細胞內(nèi)控制通路的調(diào)控信息,可由此精確測得。
NanoPro技術(shù)被用來分析信號轉(zhuǎn)導(dǎo)過程中所涉及的蛋白構(gòu)象上的極細微變化。NanoPro1000為結(jié)構(gòu)緊湊的臺式分析系統(tǒng)。
從新的角度分析蛋白調(diào)控機制,NanoPro技術(shù)采用等電點電泳的方法將不同構(gòu)象的蛋白分離。該方法大大推進了多個領(lǐng)域的研究,包括:
藥物開發(fā)-篩選激酶抑制劑藥物的作用靶點
生物標記物的發(fā)現(xiàn)和確認-觀察疾病引起的蛋白構(gòu)象的細微變化,研究其發(fā)病機制
腫瘤蛋白活性-研究組織和細胞中腫瘤蛋白的調(diào)控機制翻譯后修飾的研究-檢測蛋白構(gòu)象改變引起的等電點極細微的變化
NanoPro 1000將蛋白分離與檢測技術(shù)相結(jié)合:
NanoPro將毛細管等電點電泳和化學(xué)發(fā)光免疫測定這兩種常用的蛋白檢測技術(shù)相結(jié)合。等電點電泳可將不同構(gòu)象的蛋白分離。分離后蛋白被儀器固定在毛細管壁上,接著用化學(xué)發(fā)光免疫的方法檢測蛋白。這為信號轉(zhuǎn)導(dǎo)蛋白的檢測提供了新的視角。
【操作流程】
1.上樣
每個毛細管中加400nl樣本混合物,包括樣本、熒光標記PI和兩性電解質(zhì)。
2.分離
毛細管兩端加電壓,樣本中的蛋白質(zhì)隨著自身等電點的不同,加以分離。
3.固定
毛細管在紫外光照射下,其毛細管壁上的專利化學(xué)物質(zhì)被激活,從而將分離的蛋白異構(gòu)體固定在毛細管壁上。
4.免疫標記
用洗脫液將非特異結(jié)合的蛋白質(zhì)洗脫,將固定的蛋白質(zhì)進行免疫反應(yīng),加入發(fā)光催化劑誘導(dǎo)其化學(xué)發(fā)光,發(fā)光信號被CCD攝像機拍攝下來。
5.結(jié)果分析
通過專業(yè)的軟件,對結(jié)果進行定量分析
應(yīng)用:
Post-Translational Modification Characterization
發(fā)表文獻:
- The F-BAR protein PACSIN2 regulates epidermal growth factor receptor internalization
Bart-Jan de Kreuk, Eloise C. Anthony, Dirk Geerts and Peter L. Hordijk
JBC, Nov 2012; published as manuscript
- ERBB3 (HER3) is a key sensor in the regulation of ERBB-mediated signaling in both low and high ERBB2 (HER2) expressing cancer cells
Byung-Kwon Choi, Xuejun Fan, Hui Deng, Ningyan Zhang, Zhiqiang An
Cancer Med, Aug 2012; 1(1): 28-31
- VEGFR2 induces c-Src signaling and vascular permeability in vivo via the adaptor protein TSAd
Zuyue Sun, Xiujuan Li, Sara Massena, Simone Kutschera, Narendra Padhan, Laura Gualandi, Vibeke Sundvold-Gjerstad, Karin Gustafsson, Wing Wen Choy, Guangxiang Zang, My Quach, Leif Jansson, Mia Phillipson, Md Ruhul Abid, Anne Spurkland, and Lena Claesso
J Exp Med, Jul 2012; 209(7):1363-77.
- Autocrine activation of the MET receptor tyrosine kinase in acute myeloid leukemia
Alex Kentsis, Casie Reed, Kim L Rice, Takaomi Sanda, Scott J Rodig, Eleni Tholouli, Amanda Christie, Peter J M Valk, Ruud Delwel, Vu Ngo, Jeffery L Kutok, Suzanne E Dahlberg,Lisa A Moreau, Richard J Byers, James G Christensen, George Vande Woude, Jonathan
Nat Med, Jul 2012; 18(7): 1118-1124
- Intermolecular Binding between TIFA-FHA and TIFA-pT Mediates Tumor Necrosis Factor Alpha Stimulation and NF-κB Activation
Chia-Chi Flora Huang, Jui-Hung Weng, Tong-You Wade Wei, Pei-Yu Gabriel Wu, Pang-Hung Hsu, Yu-Hou Chen, Shun-Chang Wang, Dongyan Qin, Chin-Chun Hung, Shui-Tsung Chen, Andrew H.-J. Wang, John Y.-J. Shyy and Ming-Daw Tsai
Mol Cell Biol, Jul 2012; 32(14): 2664-2673
- The Sin3a repressor complex is a master regulator of STAT transcriptional activity
Laura Icardi, Raffaele Mori, Viola Gesellchen, Sven Eyckerman, Lode De Cauwer, Judith Verhelst, Koen Vercauteren, Xavier Saelens, Philip Meuleman, Geert Leroux-Roels, Karolien De Bosscher, Michael Boutros, and Jan Tavernier
PNAS, Jul 2012; 109(30): 12058-12063
- Charge heterogeneity of monoclonal antibodies by multiplexed imaged capillary isoelectric focusing immunoassay with chemiluminescence detection
David A Michels, Andrea W Tu, Will McElroy, David Voehringer, and Oscar Salas-Solano
Anal Chem, May 2012; Just Accepted Manuscript, Publication Date (Web): May 23, 2012
- Pdx1 Is Post-Translationally Modified In vivo and Serine 61 Is the Principal Site of Phosphorylation
Thomas Frogne, Kathrine Beck Sylvestersen, Stefan Kubicek, Michael Lund Nielsen, Jacob Hecksher-Sørensen
PLoS One, Apr 2012; 7(4):e35233. Epub.
- Defining the role of TORC1/2 in multiple myeloma
Patricia Maiso, Yi Liu, Brittany Morgan, Abdel Kareem Azab, Pingda Ren, Michel B. Martin, Yong Zhang, Yang Liu, Antonio Sacco, Hai Ngo, Feda Azab, Phong Quang, Scott J. Rodig, Charles P. Lin, Aldo M. Roccaro, Christian Rommel, and Irene M. Ghobrial
Blood, Nov 2011; 118(26): 6860-6870
- The synthetic bryostatin analog Merle 23 dissects distinct mechanisms of bryostatin activity in the LNCaP human prostate cancer cell line
Noemi Kedei, Andrea Telek, Alexandra Czap, Emanuel S. Lubart, Gabriella Czifra, Dazhi Yang, Jinqiu Chen, Tyler Morrison, Paul K. Goldsmith, Langston Lim, Poonam Mannan, Susan H. Garfield, Matthew B. Kraft, Wei Li, Gary E. Keck, Peter M. Blumberg
Biochem Pharmacol, Jun 2011; 81(11): 1296-1308
- Nanofluidic proteomic assay for serial analysis of oncoprotein activation in clincal specimens
Alice C Fan, Debrabrita Deb-Basu, Mathias W Orban, Jason R Gotlib, Yasodha Natkunam, Roger ONeill, Rose-Ann Padua, Liwen Xu, Daryl Taketa, Amy E Shirer, Shelly Beer, Ada X Yee, David W Voehringer, Dean W Felsher
Nature Medicine, May 2009; Volume 15, Number 5: 566-571
- Isoelectric focusing technology quantifies protein signaling in 25 cells
Roger A ONeill, Arunashree Bhamidipati, Xiahui Bi, Debabrita Deb-Basu, Linda Cahill, Jason Ferrante, Erik Gentalen, Marc Glazer, John Gossett, Kevin Hacker, Celeste Kirby, James Knittle, Robert Loder, Catherine Mastroieni, Michael MacLaren, Thomas M
PNAS, Oct 2006; Volume 103, Number 44: 16153-16158
|